Search results for " Ordinary differential equations"

showing 6 items of 6 documents

An operator-like description of love affairs

2010

We adopt the so--called \emph{occupation number representation}, originally used in quantum mechanics and recently considered in the description of stock markets, in the analysis of the dynamics of love relations. We start with a simple model, involving two actors (Alice and Bob): in the linear case we obtain periodic dynamics, whereas in the nonlinear regime either periodic or quasiperiodic solutions are found. Then we extend the model to a love triangle involving Alice, Bob and a third actress, Carla. Interesting features appear, and in particular we find analytical conditions for the linear model of love triangle to have periodic or quasiperiodic solutions. Numerical solutions are exhibi…

Physics - Physics and SocietyPure mathematicsLove affairDynamical systems theoryApplied MathematicsBosonic operators; Heisenberg-like dynamics; Dynamical systems; Numerical integration of ordinary differential equationsLinear modelFOS: Physical sciencesPhysics and Society (physics.soc-ph)Canonical commutation relationNonlinear systemTheoretical physicsNumber representationAlice and BobSettore MAT/07 - Fisica MatematicaMathematics
researchProduct

Some spectral mapping theorems through local spectral theory

2004

The spectral mapping theorems for Browder spectrum and for semi-Browder spectra have been proved by several authors [14], [29] and [33], by using different methods. We shall employ a local spectral argument to establish these spectral mapping theorems, as well as, the spectral mapping theorem relative to some other classical spectra. We also prove that ifT orT* has the single-valued extension property some of the more important spectra originating from Fredholm theory coincide. This result is extended, always in the caseT orT* has the single valued extension property, tof(T), wheref is an analytic function defined on an open disc containing the spectrum ofT. In the last part we improve a re…

Pure mathematicsSpectral theoryTransform theoryGeneral MathematicsSpectrum (functional analysis)Mathematical analysisExtension (predicate logic)Single valued extension property Weyl and semi-Browder operators spectral mapping theorems Weyl’s theoremFredholm theorySpectral linesymbols.namesakesymbolsSpectral theory of ordinary differential equationsAnalytic functionMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD

2016

The Relativistic Resistive Magnetohydrodynamic (RRMHD) equations are a hyperbolic system of partial differential equations used to describe the dynamics of relativistic magnetized fluids with a finite conductivity. Close to the ideal magnetohydrodynamic regime, the source term proportional to the conductivity becomes potentially stiff and cannot be handled with standard explicit time integration methods. We propose a new class of methods to deal with the stiffness fo the system, which we name Minimally Implicit Runge-Kutta methods. These methods avoid the development of numerical instabilities without increasing the computational costs in comparison with explicit methods, need no iterative …

AstrofísicaHistoryResistive touchscreenPartial differential equation010308 nuclear & particles physicsExplicit and implicit methodsNumerical methods for ordinary differential equationsStiffnessMagnetohidrodinàmica01 natural sciencesComputer Science ApplicationsEducationRunge–Kutta methods0103 physical sciencesmedicineCalculusApplied mathematicsMagnetohydrodynamic driveMagnetohydrodynamicsmedicine.symptom010303 astronomy & astrophysicsMathematics
researchProduct

Modeling of Sensory Characteristics Based on the Growth of Food Spoilage Bacteria

2016

During last years theoretical works shed new light and proposed new hypothesis on the mechanisms which regulate the time behaviour of biological populations in different natural systems. Despite of this, the role of environmental variables in ecological systems is still an open question. Filling this gap of knowledge is a crucial task for a deeper comprehension of the dynamics of biological populations in real ecosystems. In this work we study how the dynamics of food spoilage bacteria influences the sensory characteristics of fresh fish specimens. This topic is crucial for a better understanding of the role played by the bacterial growth on the organoleptic properties, and for the quality …

Stochastic ordinary differential equationmedia_common.quotation_subjectFood spoilageOrganolepticFOS: Physical sciencesSensory systemContext (language use)BiologyPopulation dynamic01 natural sciencesSensory analysisPopulation dynamics; Predictive microbiology; Stochastic ordinary differential equations; Modeling and Simulation010305 fluids & plasmas0103 physical sciencesStatisticsQuality (business)010306 general physicsQuantitative Biology - Populations and EvolutionCondensed Matter - Statistical Mechanicsmedia_commonPredictive microbiologyStatistical Mechanics (cond-mat.stat-mech)EcologyApplied MathematicsPopulations and Evolution (q-bio.PE)Experimental dataSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Modeling and SimulationFOS: Biological sciencesPredictive microbiology
researchProduct

DEGENERATE MATRIX METHOD FOR SOLVING NONLINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

1998

Degenerate matrix method for numerical solving nonlinear systems of ordinary differential equations is considered. The method is based on an application of special degenerate matrix and usual iteration procedure. The method, which is connected with an implicit Runge‐Kutta method, can be simply realized on computers. An estimation for the error of the method is given. First Published Online: 14 Oct 2010

Mathematical analysisMathematicsofComputing_NUMERICALANALYSISNumerical methods for ordinary differential equationsExplicit and implicit methods-Backward Euler methodModeling and SimulationCollocation methodQA1-939Crank–Nicolson methodDifferential algebraic equationMathematicsAnalysisMathematicsMatrix methodNumerical partial differential equationsMathematical Modelling and Analysis
researchProduct